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• Biomedical analytics require a large amount of diverse
data that is usually scattered across multiple
healthcare institutions or hospitals.

• Data sharing among institutions is a must but often not
feasible due to privacy concerns and strict regulations.

• We design a system, PriCell, for collaborative and
privacy-preserving single-cell analysis for disease-
associated cell classification with multiparty
homomorphic encryption (MHE) [1].

Contributions
• We enable collaborative and privacy-preserving model 

training between institutions.
• Our solution does not degrade utility and preserve the 

data confidentiality for federated biomedical analytics.
• Our method is generalizable to various other tasks in 

the biomedical domain and beyond.
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• The full analytics pipeline is 
performed under encryption.

• Scalable computations by 
relying on MHE.

• Various optimizations and 
approximations are 
introduced to enable efficient 
encrypted computation.
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Introduction

Accuracy boxplots when classifying
healthy donor (HD) vs. cytomegalovirus
infection (CMV) for centralized non-
secure, local, and our solution (PriCell).
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PriCell’s training execution time and communication overhead for one training epoch with
increasing number of parties, data samples, features, and filters. The computation is single-
threaded in a virtual network with an average network delay of 0.17 ms and 1 Gbps bandwidth
on 10 Linux servers with an Intel Xeon E5-2680 v.3 CPUs running at 2.5 GHz with 24 threads
on 12 cores and 256 GB RAM. (A) Increasing number of parties N when the number of global
data samples s is fixed to 18,000. (B) Increasing number of parties N, each having 500
samples. (C) Increasing number of data samples s when N = 10. (D) Increasing number of
features m when N = 10. (E) Increasing number of filters h when N = 10.

* The IP has been transferred to Tune Insight SA 
which provides customer care.


