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Introduction Contributions

 We enable collaborative and privacy-preserving model

» Biomedical analytics require a large amount of diverse training between institutions.
data that is usually scattered across multiple « Our solution does not degrade utility and preserve the
healthcare institutions or hospitals. data confidentiality for federated biomedical analytics.

» Data sharing among institutions is a must but often not
feasible due to privacy concerns and strict regulations.
 We design a system, PriCell, for collaborative and

* Our method is generalizable to various other tasks in
the biomedical domain and beyond.

privacy-preserving single-cell analysis for disease- Acknowledgements
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Method *

1. Setup phase: Key generation 2. Global Model Initialization 3. Local computation 4. Aggregation and Global Model Update
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Results
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" = = PriCell's training execution time and communication overhead for one training epoch with
> increasing number of parties, data samples, features, and filters. The computation is single-
Qe N A N G M e threaded in a virtual network with an average network delay of 0.17 ms and 1 Gbps bandwidth
HD vs. CMV - Phenotype Classification on 10 Linux servers with an Intel Xeon E5-2680 v.3 CPUs running at 2.5 GHz with 24 threads

Accuracy boxplots when classifying on 12 cores and 256 GB RAM. (A) Increasing number of parties N when the number of global
healthy donor (HD) vs. cytomegalovirus data samples s is fixed to 18,000. (B) Increasing number of parties N, each having 500
infection (CMV) for centralized non- samples. (C) Increasing number of data samples s when N = 10. (D) Increasing number of
secure, local, and our solution (PriCell). features m when N = 10. (E) Increasing number of filters h when N = 10.
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